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Abstract 

In yacht racing, a Performance Handicap System yields a handicap (a number) that enables yachts of 

varying speed potential to compete in races where the yacht with the least corrected time wins ‒ where 

corrected time is elapsed time multiplied by the handicap.  After a race, calculated handicaps are obtained 

from a set of rules applied after the Standard Corrected Time SCT has been determined.  This paper 

demonstrates a new method of determining the SCT and reviews current methods. 

Introduction 

A Performance Handicap System (PHS) in yachting is a set of rules and mathematical calculations that 

enable yachts of varying speed potential to compete in races where the yacht with the least corrected time is 

the winner.  The PHS produces a handicap which is a number, usually somewhere between 0.750 and 1.250.  

In local terminology (Australia) this handicap is known as the Allocated Handicap AHC and the yacht’s 

Elapsed Time ET multiplied by the allocated handicap yields the Corrected Time CT, or 

 
k k kCT ET AHC= ×  (1) 

where the subscript k denotes the kth boat in the fleet of n yachts and 1,2, 3, ,k n= …  and 

  finish time of  yacht start timeth
kET k= −  (2) 

So, the handicap is a numerical value that measures the performance of both the yacht and the crew. 

[A yacht’s PHS-derived handicap is different from a yacht’s rating which is a numerical measure of 

potential speed based upon the yacht’s parameters, e.g., waterline length, beam, displacement, sail area, 

etc. and a sequence of mathematical formulas related to the physics of hydrodynamics and aerodynamics 

as applied to yachting force models (World Sailing1 2019).  Several measurement systems give yacht 

ratings, e.g., The International Offshore Rule (IOR), the Chanel Rating System (CHS), the International 

Measurement System (IMS) and the International Rating Certificate (IRC).  A popular measurement 

rating system in Australia, particularly in Victoria, is the Australian Measurement System (AMS) 

administered by Yacht Racing Services Association Inc. (YRSA) for the Australian yachting community.  

This paper is not concerned with measurement systems, or the ratings derived from them.] 

The essence of a Performance Handicap System is the rules that enable the adjustment of handicaps after 

racing.  Some of these rules may be arbitrary, some could be based on experience, and some could be in place 

to achieve desired outcomes.  Indeed, a PHS used in one yacht club could be different from that used in 

another club; or the PHS used for a regatta could be different from the usual club PHS.  And, as we will 

discuss, a calculated handicap produced by the PHS after a race is related to the number of yachts in that 

race; their handicaps; the handicap of a mythical or real standard boat; and the allowable changes in 

handicaps. 

The sequence of steps in calculating a yacht’s new PHS handicap are 

1 A Standard Corrected Time STC is established for the race, and this is the corrected time of the 

standard boat (which may be real or mythical). 

 
1 World Sailing is the world governing body for the sport of sailing formed in 1907 and then known as the 

International Yacht Racing Union (IYRU).  The name was changed to the International Sailing Federation 

(ISAF) in 1996 before adopting the name World Sailing in 2015. 
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2 A Back Calculated Handicap BCH is derived from the rule k kET BCH SCT× =  and 

 k

k

SCT
BCH

ET
=  (3) 

 There may be some screening of the BCH to detect anomalous results. 

3 A Performance Indicator PI is calculated where 

 k k kPI BCH AHC= −  (4) 

4 A Calculated Handicap CHC is evaluated from a function of the allocated handicap and the 

performance indicator.  There may be a further screening of the calculated handicap before it 

becomes the yacht’s allocated handicap for the next race. 

This paper will outline some of the usual methods of determining the standard corrected time and a new 

method called Optimum Boat. 

Nomenclature 

The following notation has been used 

Symbol Meaning Definition 

AHC allocated handicap  

BCH back-calculated handicap BCH SCT ET=  

b scale factor 1.4826b ≈  
c tuning constant 4.685c =  

γ  (gamma) weighting constant ( )6.946 MADcSγ = =  

CHC calculated handicap  

CT corrected time CT ET AHC= ×  

ε  (epsilon) a small value 0.001ε =  
ET elapsed time  finish time  start timeET = −  
ETAVE average of elapsed times  

iter integer iteration counter  

k integer counter  

M median  

MAD Median Absolute Deviation  

n number of yachts in the race  

ϕ  (phi) objective function ( )
1

n

k
k

vϕ ρ
=

= ∑  

( )vψ  (psi) influence function ( ) ( ) ( )d
v v v w v

dv
ψ ρ= =  

PHS performance handicap system  

PI performance indicator PI BCH AHC= −  
q ratio of times 

AVEq ET ET=  

( )vρ  (rho) the arbitrary function of residuals  

σ  (sigma) population standard deviation  

σ̂  estimate of population st. deviation ˆ MADb= ×σ  
s sample standard deviation  

2 2,sσ  population and sample variance  

S scale, a measure of the standard deviation of 

residuals 
( )MAD 1.4826 MADS b= × ≈  

SCT standard corrected time  

v residual, a small correction ˆv y y= −  
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Symbol Meaning Definition 

w weight 0 1w≤ ≤  

( )w v  weight function  ( ) ( )w v v vψ=  

y, ŷ  a quantity y and its estimate ŷ   

Usual methods of determining the Standard Corrected Time SCT for a race 

The Standard Corrected Time SCT for a race is the corrected time of the standard boat, sometimes called the 

mark boat, which may be a yacht in the fleet or an imaginary yacht.  It is obtained from the list of corrected 

times of the yachts in the race where this list has been sorted in ascending order from least to greatest. 

We will review three methods; Trimmed Fleet Average, 45% Boat and Median Boat as representative 

of the usual methods of determining the SCT of the race and use the Example Yacht Race results in Table 1 

to calculate SCTs for each method. 

The Example Yacht Race 

The results of the Example Yacht Race shown in Table 1 have been taken from World Sailing’s2 

International Empirical Handicap Scheme for Yachts shown in Appendix A.  [The small error in the 

corrected time order of yachts C = Charlie and H = Hotel has been fixed in Table 1] 

 

 

Sail 

No. 

 

 

 Yacht 

Elapsed 

Time 

ET 

Allocated 

Handicap 

AHC 

Corrected 

Time 

CT (sec) 

 

 

Place 

10  Juliet  1:23:17 (4997 sec) 1.074 5366.778 1 

7  Golf  1:32:29 (5549) 1.003 5565.647 2 

1  Alfa  1:26:37 (5197) 1.079 5607.563 3 

4  Delta  1:33:59 (5639) 1.008 5684.112 4 

5  Echo  1:34:21 (5661) 1.005 5689.3050 5 

6  Foxtrot  1:34:44 (5684) 1.004 5706.736 6 

9  India  1:37:14 (5834) 0.982 5728.988 7 

2  Bravo  1:42:36 (6156) 0.957 5891.292 8 

8  Hotel  1:45:44 (6344) 0.948 6014.112 9 

3  Charlie  1:48:24 (6504) 0.929 6042.216 10 

 

Table 1.  The Example Yacht Race times.  Yachts are shown in Corrected Time order. 

Elapsed Time in hour, minute, second format as h:mm:ss and also in seconds (sec) 

Trimmed Fleet Average 

World Sailing in their International Empirical Handicap Scheme for Yachts (see Appendix A) use the 

average CT excluding the lowest 20% and highest 40% of the CTs (rounded down to whole numbers).  That 

is, if there are 10 yachts in the race then 20 100 10 2× =  and 40 100 10 4× = , then the CTs of the first 

two, and the last four yachts are ignored and the SCT is the average of the CTs of yachts placed 3rd, 4th, 

5th, and 6th.  If there were 19 yachts in the race then 20 100 19 3.8 3× = →  and 40 100 19 7.6 7× = → , 

then the CTs of the first three, and the last seven yachts are ignored and the SCT is the average of the CTs 

of yachts placed from 4th to 12th. 

  

 
2 World Sailing is the governing body for the sport of sailing formed in 1907 and then known as the 

International Yacht Racing Union (IYRU).  The name was changed to the International Sailing Federation 

(ISAF) in 1996 before adopting the name World Sailing in 2015. 
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In the Example Yacht Race shown in Table 1 where there are 10 yachts, the corrected times of Juliet and 

Golf (the lowest 20% of CTs) and India, Bravo, Hotel and Charlie (the highest 40% of CTs) are ignored and 

the SCT is the average of the CTs of Alfa, Delta, Echo, and Foxtrot, equal to 5672 sec = 1:34:32 (nearest 

second). 

45% Boat 

TopYacht3 in their sailing software documentation suggest that from their experience, the SCT for the race 

be the CT of the “45% boat” where the 45% boat is the yacht finishing in 45th place on corrected time in a 

fleet of 100 yachts.  If the 45% boat is not an integer (a whole number) then the nearest yacht is selected, 

e.g., in a fleet of 10, the 45% boat is 45 100 10 4.5 4th× = →  and in a fleet of 19 the 45% boat is 

45 100 19 8.55 9th× = →  

In the Example Yacht Race shown in Table 1 the 45% Boat is the 4th boat Delta and the SCT of the race is 

Delta’s CT = 5684 sec = 1:34:44 (nearest second) 

Median Boat 

The SCT is the median4 of the CTs sorted in ascending order from least to greatest.  The median, unlike the 

mean or average, is not skewed by a small proportion of extremely large or small values and is the value 

separating the lower half from the higher half of CTs.  In a fleet of 10 yachts (an even number), the SCT is 

the average of the CTs of the 5th and 6th placed yachts.  In a fleet of 19 (an odd number), the SCT is the 

CT of the yacht finishing in 10th place. 

In the Example Yacht Race shown in Table 1 where there are 10 yachts, the SCT of the race is the average 

of the CTs of Echo and Foxtrot (5th and 6th yachts), equal to 5698 sec = 1:34:58 (nearest second). 

The three methods discussed above; Trimmed Fleet Average, 45% Boat and Median Boat are representative 

of various methods used in performance handicap systems that tend to ‘find’ a standard boat ‒ and hence a 

Standard Corrected Time ‒ that is close to the middle of a fleet on corrected time order.  And, consequently, 

roughly half of the fleet who finish before the standard boat will have their handicaps increased for the next 

race and the other half, finishing after, will have their handicaps decreased. 

Another way of determining the Standard Corrected Time SCT 

Another way of determining the Standard Corrected Time – denoted here as Optimum Boat – is to use 

mathematical optimization, where a function of the fleet’s performance indicators is minimized, leading to a 

method for calculating the SCT. 

Optimum Boat 

Consider a yacht race as a system where handicaps and elapsed times (AHCs and ETs) are used to produce 

corrected time results, and then the handicaps and elapsed times are used again to update the handicaps for 

the next race.  This updating process consists of two parts: 

(i) calculation of the Standard Corrected Time SCT followed by the Back-Calculated Handicaps 

BCHs, then the Performance Indicators PIs and, 

 
3 TopYacht (https://topyacht.com.au/web) founded by Rod McCubbin, Cheltenham VIC 3192, and now a 

division of Northstar Technologies Australia, Mount Lawley WA 6929, provides race management and 

scoring software to the Australian sailing community. 
4 The median of a sample of n values is obtained by first ordering the values from least to greatest and then 

choosing the middle value if n is odd or the average of the two middle values if n is even.  In either case 

there will be the same number of values that are larger than or equal to the median, and smaller than or 

equal to the median.  The median is a robust estimator of the location of a sample of values drawn from a 

large population. 
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(ii) a function of the PIs and AHCs gives the Calculated Handicaps CHCs that become the Allocated 

Handicaps AHCs for the next race. 

Our Optimum Boat method of determining the SCT uses a mathematical optimization process known as M-

estimation5 to produce a simple equation for the SCT involving summations of weighted handicaps and 

functions of elapsed times.  But, the weights, denoted 
kw  are functions of the SCT, Allocated Handicaps and 

Elapsed Times, therefore calculating the SCT is iterative and concludes when the changes to the weights 

from one iteration to the next become acceptably small.  M-estimation is explained in some detail in 

Appendix B where the equations we list below are developed. 

For our purposes, we define a quantity y , its estimate ŷ  (where the caret symbol ‘^’ denotes an estimate) 

and a residual v as follows.  For the 1,2, 3, ,k n= …  yachts in the race, consider their allocated handicaps to 

be quantities 
ky  and their back-calculated handicaps to be estimates 

k̂y  and write a simple equation for each 

yacht as 

 ˆ
k k ky v y+ =  (5) 

where the residual kv  is a small random quantity and (5) can be rearranged as 

 ˆ
k k kv y y= −  (6) 

and we may say that the residuals are functions of measurements and parameters.  For example, in our PHS 

yacht race, (5) represents 
k k kAHC v BCH+ =  and equation (6) represents 

k k kv BCH AHC= − , and with 

(3) and (4) we may write 

 k k k kv SCT ET AHC PI= − =  (7) 

and the residuals are functions of the parameters SCT (unknown), kAHC (known), and the measurement 

kET . 

M-estimators result from optimizing an objective function ( )
1

n

k
k

vϕ ρ
=

= ∑  where ( )vρ  is an arbitrary function 

of the residuals v having certain desirable characteristics and ( )vρ  is connected to an influence function 

( )vψ  by the relationship ( ) ( )d
v v

dv
ψ ρ= .  The influence function ( )vψ  is also connected to a weight 

function ( )w v  by the relationship ( ) ( )v v w vψ =  and 0 1w≤ ≤ . 

In our case, we choose a weight function known as Tukey’s bisquare weight function6 (see Appendix B) which 

can be defined as  

 ( )
2

2
1 for

0 for

k k
k

k

PI PI
w

PI

γ γ

γ

   − ≤ =   >

 (8) 

where cSγ =  is a weight constant, (the symbol γ  is the Greek letter gamma).  S is a measure of scale 

calculated from the data and c is a tuning constant (more about S and c in Appendix B).   

  

 
5 M-estimation is a robust method of determining estimates of quantities that are functions of measurements.  

The name is a contraction of maximum likelihood estimation. 
6 John W Tukey (1915 – 2000) was an American mathematician and statistician, best known for developing 

the fast Fourier Transform (FFT) algorithm and box plot. The Tukey range test, the Tukey lambda 

distribution, and the Tukey test of additivity all bear his name. He is also credited with coining the 

term bit and the first published use of the word software. 
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4.685c =  and ( )1.4826 MADS =  where MAD is the Median Absolute Deviation of the performance 

indicators (see Appendix B) and 

 { } { }MAD median    where   mediank kPI M M PI= − =  (9) 

where x  means the absolute value of x and the braces { }  indicate a finite sample of n values.  Hence, the 

weight constant ( )6.946 MADc S= =γ  

After choosing the weight function, we use the relationships between the functions ( )vρ , ( )vψ , and ( )w v  

to derive the equation for ( )kvρ  as 

 ( ) ( )
3

22 1 1 for 

6 1 for 

k k
k

k

PI PI
v

PI

γ γ γ
ρ

γ

    − − ≤  =   >

 (10) 

Now the objective function ϕ  is 

 ( ) ( )
3

22

1 1

1 1 for 

6 1 for 

n n

k k
k

k k
k

PI PI
v

PI

γ γ γ
ϕ ρ

γ= =

     − − ≤  = =     >   

∑ ∑  (11) 

and since k k kPI SCT ET AHC= −  then the objective function ϕ  is a function of the single unknown 

parameter SCT, i.e., ( )SCTϕ ϕ=  and ϕ  will have an optimum (either a minimum or a maximum value) 

when the derivative of ϕ  with respect to the SCT is equal to zero, i.e., 0
d

d SCT

ϕ
= . 

This leads to the solution for the standard corrected time SCT as 

 
2

k k k

k k

w AHC w
SCT

ET ET
= ∑ ∑  (12) 

where the symbol Σ  (Greek letter capital sigma) represents summations that may be shown in equivalent 

forms as 1 2 3
1

n

k k k n
k k

x x x x x x x
=

= = = + + + +∑ ∑ ∑ ⋯  

For numerical stability, let k
k

AVE

ET
q

ET
=  where 

1
AVE kET ET

n
= ∑  then 

 
2

k k k
AVE

k k

w AHC w
SCT ET

q q
= ∑ ∑  (13) 

The curve of the objective function ϕ  

The objective function ϕ  given by (11) can be expressed in a different form by using the weight function (8) 

and assuming that all kPI γ≤  then ( ) ( ){ }2 2

1 1

1 1
6

n n

k k k
k k

v w PI
γ

ϕ ρ γ
= =

 = = − −   ∑ ∑  and since 

k k kPI SCT ET AHC= −  then, with a bit of algebra, we may write 

 ( )
2

2 2

2
1 1

1
1 2

6 6

n n
k kk

k k k
k k kk

w AHCw
w SCT SCT w AHC

ETET

γ
ϕ

= =

    = − + − +     
∑ ∑  
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Gathering terms gives 

 ( )
2

2 2

2
1 1 1 1

1 1 1
1

6 3 6 6

n n n n
k kk

k k k
k k k kkk

w AHCw
SCT SCT w w AHC

ETET

γ
ϕ

= = = =

    
    = − + − +    
        

∑ ∑ ∑ ∑  (14) 

Hence, ϕ  is an equation of the 2nd degree in the parameter SCT.  This is demonstrated in Figure 1 where 

the curve is defined by plotted values of ϕ  (y-axis) for 100 assumed SCTs (x-axis) for the yachts in the 

Example Yacht Race in Table 1.  The SCTs are evenly spaced between the corrected times of the first and 

last yachts. 

Note that the optimum value of ϕ  is given by evaluating 0
d

d SCT

ϕ
=  and from (14) this gives

2
1 1

1 1
0

3 3

n n
k kk

k k kk

w AHCwd
SCT

d SCT ETET

ϕ

= =

  
  = − =  
     

∑ ∑  and by rearrangement we obtain 

2
1 1

n n
k k k

k kk k

w AHC w
SCT

ET ET= =

= ∑ ∑  that is equation (12) 

 

Figure 1.  Curve of ϕ  versus SCT for the Example Yacht Race in Table 1.  Squares 

indicate an SCT equal to the corrected time of a yacht and the optimum value of ϕ  = 

0.0050 is the minimum for a SCT = 5705.898 seconds. 

In M-estimation, the weights kw  are functions of the ‘unknown’ parameters which means that the solution is 

iterative and usually begins by assuming some initial values for either the weights or the parameters and 

then calculating a new set of weights and parameters and the iterative process ceases when differences 

between successive solutions reach acceptably small values. 
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The method of calculating the Optimum Boat Standard Corrected Time 

1. Calculate the average of the Elapsed Times of the 1,2, 3, ,k n= …  boats that finished the race 

 
1

1
n

AVE k
k

ET ET
n =

= ∑  (15) 

2. Calculate the ratios kq  where 

 k k AVEq ET ET=  (16) 

3. Set the iteration counter 1iter =  

4. Set a small value for a quantity ε  (Greek letter epsilon) for testing when the iterative process will 

cease.  For our purposes 0.001ε =  

Begin the iterative process. 

5. IF iteration counter 1iter = , THEN set ‘previous’ weights 
( )

1
prev

kw = , ELSE 
( ) ( )prev next

k kw w= . 

6. Calculate the Standard Corrected Time SCT using 

 

( ) ( )

2

prev prev
k k k

AVE
k k

w AHC w
SCT ET

q q
= ∑ ∑  (17) 

7. Calculate the Back-Calculated Handicaps 
kBCH  using (3) 

 
k kBCH SCT ET=  (18) 

8. Calculate the Performance Indicators 
kPI  using (4) 

 
k k kPI BCH AHC= −  (19) 

9. Calculate the median M of the Performance Indicators, 

 ( )median kM PI=  (20) 

10. Calculate the Median Absolute Deviation MAD of the Performance Indicators where 

 ( )MAD median kPI M= −  (21) 

11. Calculate the weighting constant γ  (gamma) where 

 ( )6.946 MAD=γ  (22) 

12. Calculate weights for the next iteration 
( )next

kw  where 

 
( ) ( )

2
2

1 for

0 for

next
k k

k

k

PI PI
w

PI

γ γ

γ

   − ≤ =   >

 (23) 

13. IF all 
( ) ( )next prev

k kw w ε− < , THEN go to step 14, ELSE 1iter iter= + , go to step 5 

14. The iterative process has concluded and SCT for iteration iter is the Standard Corrected Time for 

the yacht race. 
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Using the Example Yacht Race shown in Table 1, the average ET and the q values (steps 1 and 2 above) are 

shown in Table 2A.  These are followed by the calculated values in Table 2B for the first iteration of the 

process outlined above (steps 3 to 13). 

 

 

Sail 

No. 

 

 

 Yacht 

Elapsed 

Time 

ET (sec) 

Allocated 

Handicap 

AHC 

Corrected 

Time 

CT (sec) 

 

 

Place 

 

 

q 

10  Juliet  4997 1.074 5366.778 1 0.868062 

7  Golf  5549 1.003 5565.647 2 0.963954 

1  Alfa  5197 1.079 5607.563 3 0.902806 

4  Delta  5639 1.008 5684.112 4 0.979588 

5  Echo  5661 1.005 5689.305 5 0.983410 

6  Foxtrot  5684 1.004 5706.736 6 0.987406 

9  India  5834 0.982 5728.988 7 1.013463 

2  Bravo  6156 0.957 5891.292 8 1.069400 

8  Hotel  6344 0.948 6014.112 9 1.102059 

3  Charlie  6504 0.929 6042.216 10 1.129853 

  average     

  5756.500     

 

Table 2A.  The average ET and q-values where 5756.5 secAVEET =  and 
k k AVEq ET ET=  

 

 

Sail 

No. 

prev 

weight 

( )prev

kw  

 

 

w q  

 

 

( )w q AHC

 

 

 

( )w q q  

 

 

BCH  

 

 

PI  

abs 

deviations 

PI M−  

next 

weight 

( )next

kw  

10 1 1.151991 1.237239 1.327084 1.141 0.067 0.066335 0.614129 

7 1 1.037394 1.040506 1.076187 1.027 0.024 0.023861 0.943712 

1 1 1.107658 1.195163 1.226907 1.097 0.018 0.017437 0.969396 

4 1 1.020837 1.029004 1.042108 1.011 0.003 0.002466 0.999216 

5 1 1.016870 1.021954 1.034024 1.007 0.002 0.001537 0.999645 

6 1 1.012755 1.016806 1.025673 1.003 -0.001 0.001537 0.999868 

9 1 0.986716 0.968716 0.973608 0.977 -0.005 0.005321 0.997622 

2 1 0.935104 0.894894 0.874419 0.926 -0.031 0.031428 0.908439 

8 1 0.907393 0.860208 0.823362 0.899 -0.049 0.049868 0.776014 

3 1 0.885071 0.822231 0.783350 0.876 -0.053 0.052971 0.749115 

   sum sum  M MAD   

   10.086961 10.186722  0.00037 0.020649  

 

Table 2B.  The first iteration of the solution for the SCT where 

 

( ) ( )

2
5756.50 5700.125 sec10.086961 10.186722

prev prev
k k k

AVE

k k

w AHC w
SCT ET

q q
= = × =∑ ∑ , 

 ( )6.946 MAD 6.946 0.020649 0.143428= = × =γ , 

 
( ) ( )

2
2

1  since all 
next

k k kw PI PIγ γ
 = − ≤  

. 
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Four iterations are sufficient to give the Optimum Boat SCT = 5706 sec = 1:35:06 (nearest second) and the 

SCTs and weights 
( )prev

kw  and 
( )next

kw  for each iteration are shown in Table 3. 

 
 Iteration 1 Iteration 2 Iteration 3 Iteration 4 
 ( )prev

kw  
( )prev

kw  
( )prev

kw  
( )prev

kw  

Juliet 1.000 0.6141290553856193 0.6062991894282684 0.6046353496641509 
Golf 1.000 0.9437123037963773 0.9401273207101736 0.9393542812085032 
Alfa 1.000 0.9693956163322419 0.9664596806986721 0.9658208641116867 
Delta 1.000 0.999216127976095 0.9987081876236733 0.9985843884508177 
Echo 1.000 0.9996448425283547 0.9992828086086153 0.9991899519181419 
Foxtrot 1.000 0.9998684820368631 0.9999877723767444 0.9999967312569082 
India 1.000 0.9976216624695033 0.9983252306151149 0.9984585101836251 
Bravo 1.000 0.9084387483165871 0.9130632549794919 0.9140287284755588 
Hotel 1.000 0.7760140751165618 0.7830250864350125 0.7844991748253646 
Charlie 1.000 0.7491148190258168 0.7563451199065648 0.7578667294795469 
 SCT = 5700.125 sec SCT = 5704.716 sec SCT = 5705.691 sec SCT = 5705.898 sec 
 ( )next

kw  
( )next

kw  
( )next

kw  
( )next

kw  

 0.6141290553856193 0.6062991894282684 0.6046353496641509 0.6042829506700385 
 0.9437123037963773 0.9401273207101736 0.9393542812085032 0.9391900499574978 
 0.9693956163322419 0.9664596806986721 0.9658208641116867 0.9656848960208297 
 0.999216127976095 0.9987081876236733 0.9985843884508177 0.9985574588312575 
 0.9996448425283547 0.9992828086086153 0.9991899519181419 0.9991695730903568 
 0.9998684820368631 0.9999877723767444 0.9999967312569082 0.999997896059553 
 0.9976216624695033 0.9983252306151149 0.9984585101836251 0.9984860132391258 
 0.9084387483165871 0.9130632549794919 0.9140287284755588 0.9142324444264633 
 0.7760140751165618 0.7830250864350125 0.7844991748253646 0.7848106807522991 
 0.7491148190258168 0.7563451199065648 0.7578667294795469 0.7581883415900925 

Table 3.  SCTs and weights 
( )prev

kw  and 
( )next

kw  for each iteration 

Because of the iterative nature of the solution for the Standard Corrected Time SCT, a computer language 

supporting user-defined functions would be an appropriate choice.  Examples of two options are shown below, 

one is a function written in GNU Octave7 called yacht_M_estimate.m and the other is a Microsoft Excel 

macro called MestimateSCT() written in Visual Basic for Applications (VBA). 

Octave function to compute SCT 

Because of the iterative nature of the solution for the SCT, a computer language supporting user-defined 

functions would be an appropriate choice.  One such language is GNU Octave8 and a function called 

yacht_M_estimate.m is shown below.  It requires a list of Elapsed Times in seconds (ET_sec) and 

Allocated Handicaps AHCs for the n yachts in the race and returns the SCT, weights, a flag (M_flag = 1 for 

success and M_flag = 0 for failure to converge), and the number of iterations required for an acceptable 

solution. 

The Octave and Matlab languages support matrix algebra where a matrix is a two-dimensional (2D) data 

structure consisting of rows and columns.  Vectors are matrices with either a single column (a column vector) 

or a single row (a row vector).  The words matrix and array are often used interchangeably, but an array is a 

more general data structure containing elements of a single type in one, two, three, or higher dimensions. 

 
7 GNU Octave is a high-level language, primarily intended for numerical computations.  It provides a convenient 

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical 

experiments using a language that is mostly compatible with Matlab.  GNU Octave is freely redistributable software 

from the Free Software Foundation. 
8 GNU Octave is a high-level language, primarily intended for numerical computations.  It provides a convenient 

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical 

experiments using a language that is mostly compatible with Matlab.  GNU Octave is freely redistributable software 

from the Free Software Foundation. 
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Arithmetic operations of addition, subtraction and multiplication of matrices follow rules of matrix algebra, 

but division requires matrix inversion which is a more complicated process.  In the function 

yacht_M_estimate.m shown below the matrices are vectors (1D arrays) and arithmetic operations of 

multiplication and division with vectors of the same length are simpler and achieved with element-by-element 

operations.  For example, vector x divided by a constant a is shown as x./a and vector x divided by the 

elements of vector y is x./y, and similarly for vector multiplication. 

 

 
function [SCT,w,M_flag,iter] = yacht_M_estimate(ET_sec,AHC) 1 
% 2 
% This function computes the Standard Corrected Time (SCT) of a yacht race 3 
% using M-estimation with Tukey's bisquare weight function 4 
% 5 
%------------------------------------------------------------------------------- 6 
% Function:  yacht_M_estimate 7 
% 8 
% Usage:     [SCT w M_flag,iter] = yacht_M_estimate(ET_sec,AHC); 9 
% 10 
% Author:    Rod Deakin, 11 
%            13 Aldercress Approach, 12 
%            DUNSBOROUGH, WA 6281, AUSTRALIA. 13 
%            email: randm.deakin@gmail.com 14 
%            Version  1.0   16 June 2023 15 
%                     1.1   04 December 2024 16 
% 17 
% Functions required: 18 
%    none 19 
% 20 
% Purpose: 21 
%   This function computes the Standard Corrected Time (SCT) of a yacht race 22 
%   given a set of elapsed times (ET) in seconds and allocated handicaps (AHC) 23 
% 24 
% Variables: 25 
%    AHC         - vector of Allocated Handicaps 26 
%    b           - multiplier for MAD (b = 1.4826) 27 
%    BCH         - vector of Back Calculated Handicaps 28 
%    c           - tuning constant (c = 4.685) 29 
%    epsilon     - small value for testing difference between weights 30 
%    ET_sec      - vector of elapsed times in seconds 31 
%    ET_ave      - average of elapsed times (seconds) 32 
%    gamma       - weight constant (gamma = c*S) 33 
%    iter        - iteration number 34 
%    k           - integer counter 35 
%    M           - median of PIs 36 
%    MAD         - median absolute deviation 37 
%    M_flag      - 1 = Pass, 0 = Fail 38 
%    n           - number of yachts in race 39 
%    PI          - vector of Performance Indicators where PI = BCH - AHC 40 
%    q           - vector of ratios ET/ET_ave 41 
%    S           - scale of PIs (S = b*MAD) 42 
%    SCT         - Standard Corrected Time (seconds) 43 
%    u           - standardised PI (u = PI/gamma) 44 
%    w           - vector of weights 45 
%    w_prev      - vector of previous weights 46 
%    w_next      - vector of next weights 47 
% 48 
% Remarks: 49 
%    The function returns SCT, w, M_flag, and iter. 50 
%    weights are in the range  0 <= w < 1 51 
%    If M_flag = 1 then the iterative procedure has converged to a valid result 52 
%                  for SCT 53 
%    If M_flag = 0 then the iterative procedure has failed to converge in 20 54 
%                  iterations to a valid result for SCT 55 
% 56 
% References: 57 
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%    [1] Deakin, R.E., (2024), 'Another way to Calculate the Standard Corrected 58 
%           Time of a yacht Race', xx pages, 04-Dec-2024.  Available at URL 59 
%           http://www.mygeodesy.id.au in the Sailing folder 60 
% 61 
%------------------------------------------------------------------------------- 62 
 63 
% determine number of yachts in race 64 
n = length(AHC); 65 
% calculate the average of the elapsed times (in seconds) 66 
ET_ave = mean(ET_sec); 67 
% calculate the ratios q = ET/ET_ave 68 
q = ET_sec./ET_ave; 69 
% set the maximum number of iterations 70 
max_iter = 20; 71 
% set tuning constant 72 
c = 4.685; 73 
% set multiplier for MAD where S = b*MAD 74 
b = 1.4826; 75 
% set iteration counter 76 
iter = 1; 77 
%set value of epsilon 78 
epsilon  = 0.001; 79 
% set vector of weights at unity for initial solution 80 
w_prev = ones(n,1); 81 
 82 
while (1) 83 
 84 
  % determine the SCT 85 
  x = w_prev./q; 86 
  sum1 = sum(x.*AHC); 87 
  sum2 = sum(x./q); 88 
  SCT  = ET_ave*sum1/sum2; 89 
 90 
  % compute BCHs and PIs 91 
  BCH = SCT./ET_sec; 92 
  PI = BCH-AHC; 93 
 94 
  % compute median of performance indicators 95 
  M = median(PI); 96 
  % compute Median Absolute Deviation 97 
  MAD = median(abs(PI-M)); 98 
  % compute weighting factor gamma 99 
  S = b*MAD; 100 
  gamma = c*S; 101 
 102 
  % compute new weights w_next using Tukey's bisquare weight function 103 
  w_next = zeros(n,1); 104 
  for k = 1:n 105 
    u = PI(k)/gamma; 106 
    if (abs(u) > 1) 107 
      w_next(k) = 0; 108 
    else 109 
      w_next(k) = (1-u^2)^2; 110 
    endif 111 
  end 112 
 113 
  % test the new weights w_next to see if iterative process has converged 114 
  if abs(w_next-w_prev) < epsilon 115 
    M_flag = 1; 116 
    w = w_prev; 117 
    break; 118 
  endif 119 
  if iter > max_iter 120 
    fprintf('\nIteration for weights failed to converge after %2d iterations\n\n',max_iter); 121 
    M_flag = 0; 122 
    w = w_prev; 123 
    break; 124 
  endif 125 



13 

 

  % update weights and iteration number 126 
  w_prev = w_next; 127 
  iter = iter+1; 128 
endwhile 129 
endfunction 130 

Excel Macro to compute SCT 

Visual Basic for Applications (VBA) is an implementation of Microsoft’s object-oriented programming 

language Visual Basic 6.0 built into most desktop Microsoft Office applications.  Using VBA in Excel allows 

the incorporation of user-defined functions in Excel processes.  The VBA program below is in the form of a 

sub, also known as a subroutine or sub procedure, and the code is used to perform a specific task but does 

not return any value.  In Excel, this code is referred to as a Macro. 

 
Sub MestimateSCT() 1 
' 2 
'------------------------------------------------------------------------------ 3 
' This Excel subroutine, written in Microsoft’s Visual Basic for Applications, 4 
' computes the Standard Corrected Time (SCT) of a yacht race using M-estimation 5 
' with Tukey's bisquare weight function 6 
' 7 
' Subroutine:  MestimateSCT 8 
' 9 
' Author:      Rod Deakin, 10 
'              13 Aldercress Approach, 11 
'              DUNSBOROUGH, WA 6281, AUSTRALIA. 12 
'              email: randm.deakin@gmail.com 13 
'              Version  1.0  04 December 2024 14 
' 15 
' Purpose: 16 
'   This function computes the Standard Corrected Time (SCT) of a yacht race 17 
'   given a set of elapsed times (ET) and allocated handicaps (AHC) 18 
' 19 
' Variables: 20 
'    AHC         - Allocated Handicap 21 
'    ET          - elapsed time 22 
'    aveET       - average of elapsed times 23 
'    Iter        - iteration counter (integer) 24 
'    Gamma       - weight constant 25 
'    j           - integer counter 26 
'    M           - median of PInd's 27 
'    MAD         - median absolute deviation 28 
'    n           - number of yachts in race 29 
'    PInd        - Performance Indicator where PInd = SCT/ET - AHC 30 
'    q           - vector of ratios ET/aveET 31 
'    Row         - row counter (integer) 32 
'    SCT         - Standard Corrected Time (seconds) 33 
'    Test        - sum of values that are either 1 or 0 for each yacht. 34 
'                  When Test = n the iterative sequence has converged 35 
'    u           - standardised PInd (u = PInd/Gamma) 36 
'    Weight      - weight 37 
'    prevWeight  - previous weight 38 
'    nextWeight  - next weight 39 
' 40 
' Remarks: 41 
'    The subroutine requires an Excel workbook with at least two spreadsheets, 42 
'    one named "Race Times" and the other named "Optimum Boat". 43 
'    The spreadsheet named Race Times must have the following form 44 
'    * 6 columns A,B,C,D,E,F that are: (A)Sail No., (B)Yacht Name, 45 
'      (C)Elapsed Time, (D)Allocated Handicap, (E)Corrected Time, (F)Place 46 
'    * Rows 1 & 2 contain race series information 47 
'    * Rows 3 & 4 are column headers 48 
'    * Rows 5 and onwards contain the race data 49 
'    * Elapsed Times are assumed to be in Excel Custom format h:mm:ss 50 
'    * Corrected Times are assumed to be in Excel Custom format hh:mm:ss.000 51 
' 52 
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'    An example of a "Race Times" spreadsheet for n = 10 yachts is shown below 53 
' 54 
'      |    A     |     B  |        C     |    D      |      E         |   F   | 55 
'     1| World Sailing  - International Empirical Handicap Scheme for Yachts 56 
'     2| 57 
'     3|          |        | Elapsed Time | Allocated | Corrected Time |       | 58 
'     4| Sail No. |  Yacht |  (h:mm:ss)   | Handicap  |    (h:mm:ss)   | Place | 59 
'     5|    10         J       1:23:17       1.074       01:29:26.778      1 60 
'     6|     7         G       1:32:29       1.003       01:32:45.647      2 61 
'     7|     1         A       1:26:37       1.079       01:33:27.563      3 62 
'     8|     4         D       1:33:59       1.008       01:34:44.112      4 63 
'     9|     5         E       1:34:21       1.005       01:34:49.305      5 64 
'    10|     6         F       1:34:44       1.004       01:35:06.736      6 65 
'    11|     9         I       1:37:14       0.982       01:35:28.988      7 66 
'    12|     2         B       1:42:36       0.957       01:38:11.292      8 67 
'    13|     8         H       1:45:44       0.948       01:40:14.112      9 68 
'    14|     3         C       1:48:24       0.929       01:40:42.216     10 69 
' 70 
'    Weights are in the range  0 <= W < 1 and are calculated using Tukey's 71 
'    formula for the Biweight where 72 
'       Weight = (1-(PInd/Gamma)^2)^2 if |PInd| <= Gamma 73 
'       Weight = 0 if |PInd| > Gamma 74 
' 75 
'    Since PInd = ET/SCT - AHC then both PInd and Weight are functions of 76 
'    the unknown SCT and the process of solving for the SCT is iterative and 77 
'    converges to an acceptable solution when the change in weights from one 78 
'    iteration to the next is less than 0.001. 79 
' 80 
'    The subroutine copies the data from sheet "Race Times" to sheet 81 
'    "Optimum Boat" and intermediate calculations are shown in columns after 82 
'    the Place column on this sheet.  At the conclusion of the iterative 83 
'    process the SCT is written below the column of Corrected Times. 84 
'    The median M of the PInd's and the Median Absolute Deviation (MAD) where 85 
'    MAD = Median(|PInd-M|), are shown and the value of Gamma is written below 86 
'    the MAD value.  In the column after nextWeight are values that 87 
'    are either 1 or 0. And if |prevWeight-nextWeight|<0.001 than value = 1, or 88 
'    0 otherwise.  At the bottom of this column is the sum of these values 89 
'    (that equals n when the process has converged) and below that is the number 90 
'    of iterations for convergence. 91 
'    The value for the SCT is also written below the Corrected Times in the 92 
'    'Race Times" spreadsheet. 93 
' 94 
' References: 95 
'    [1] Deakin, R.E., (2024), 'Another way to Calculate the Standard Corrected 96 
'           Time of a yacht Race', xx pages, 04-Dec-2024.  Available at URL 97 
'           http://www.mygeodesy.id.au in the Sailing folder 98 
' 99 
'------------------------------------------------------------------------------- 100 
' 101 
'Select the Race Times sheet. 102 
    Sheets("Race Times").Select 103 
     104 
'Determine the row number of the last yacht in the race 105 
    J = 4 106 
    For Row = 5 To 250 107 
      If (Sheets("Race Times").Cells(Row, 1).Value <> "") Then 108 
        J = J + 1 109 
      End If 110 
    Next Row 111 
     112 
'Calculate the number of yachts in the race 113 
    n = J - 4 114 
     115 
'Copy the column headers and race data from sheet "Race Times" 116 
'to sheet "Optimum Boat" 117 
    Sheets("Race Times").Select 118 
    Range(Cells(3, 1), Cells(J, 6)).Select 119 
    Selection.Copy 120 
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    Sheets("Optimum Boat").Select 121 
    Range("A1").Select 122 
    ActiveSheet.Paste 123 
 'Use AutoFit to adjust the column width 124 
    Sheets("Optimum Boat").Select 125 
    Range(Cells(1, 1), Cells((n + 2), 6)).Select 126 
    Selection.Columns.AutoFit 127 
    Range("A1").Select 128 
     129 
'Calculate the average of the Elapsed Times 130 
    Range(Cells(3, 3), Cells((n + 2), 3)).NumberFormat = "hh:mm:ss" 131 
    aveET = WorksheetFunction.Average(Range(Cells(3, 3), Cells((n + 2), 3))) 132 
    Cells((n + 4), 3).NumberFormat = "hh:mm:ss.000" 133 
    Cells((n + 4), 3).Value = aveET 134 
     135 
'Calculate the ratios q = ET / aveET 136 
    Cells(2, 7).HorizontalAlignment = xlCenter 137 
    Cells(2, 7).VerticalAlignment = xlCenter 138 
    Cells(2, 7).Value = "q" 139 
    For Row = 3 To (n + 2) 140 
      ET = Cells(Row, 3).Value 141 
      Cells(Row, 7).Value = ET / aveET 142 
    Next Row 143 
 144 
'Iteration routine to determine SCT 145 
    Test = 0 146 
    Iter = 0 147 
    Do While Test < n 148 
      Iter = Iter + 1 149 
      'Set Weights 150 
      Cells(2, 8).HorizontalAlignment = xlCenter 151 
      Cells(2, 8).VerticalAlignment = xlCenter 152 
      Cells(2, 8).Value = "prevWeight" 153 
      If Iter = 1 Then  'Set prevWeight = 1 154 
        For Row = 3 To (n + 2) 155 
          Cells(Row, 8).Value = 1 156 
        Next Row 157 
      Else  'prevWeight = nextWeight 158 
        For Row = 3 To (n + 2) 159 
          Cells(Row, 8).Value = Cells(Row, 11).Value 160 
        Next Row 161 
      End If 162 
      'Calculate SCT 163 
      Sum1 = 0 164 
      Sum2 = 0 165 
      For Row = 3 To (n + 2) 166 
        q = Cells(Row, 7).Value 167 
        Weight = Cells(Row, 8).Value 168 
        AHC = Cells(Row, 4).Value 169 
        Sum1 = Sum1 + (Weight * AHC / q) 170 
        Sum2 = Sum2 + (Weight / (q * q)) 171 
      Next Row 172 
      SCT = aveET * Sum1 / Sum2 173 
      Cells((n + 4), 8).NumberFormat = "hh:mm:ss.000" 174 
      Cells((n + 4), 8).Value = SCT 175 
       176 
      'Calculate Performance Indicators (PInd) 177 
      Cells(2, 9).HorizontalAlignment = xlCenter 178 
      Cells(2, 9).VerticalAlignment = xlCenter 179 
      Cells(2, 9).Value = "PInd" 180 
      For Row = 3 To (n + 2) 181 
        ET = Cells(Row, 3) 182 
        AHC = Cells(Row, 4) 183 
        PInd = (SCT / ET) - AHC 184 
        Cells(Row, 9).Value = PInd 185 
      Next Row 186 
      'Calculate the median of the PInd's 187 
      M = WorksheetFunction.Median(Range(Cells(3, 9), Cells((n + 2), 9))) 188 
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      Cells((n + 4), 9).Value = M 189 
      'Calculate the absolute deviations |PInd - M| 190 
      Cells(2, 10).HorizontalAlignment = xlCenter 191 
      Cells(2, 10).VerticalAlignment = xlCenter 192 
      Cells(2, 10).Value = "|PInd - M|" 193 
      For Row = 3 To (n + 2) 194 
        Cells(Row, 10).Value = Abs(Cells(Row, 9) - M) 195 
      Next Row 196 
      'Calculate MAD = median of absolute deviations |PInd - M| 197 
      MAD = WorksheetFunction.Median(Range(Cells(3, 10), Cells((n + 2), 10))) 198 
      Cells((n + 4), 10).Value = MAD 199 
      'Calculate the weighting constant Gamma 200 
      Gamma = 6.946 * MAD 201 
      Cells((n + 5), 10).Value = Gamma 202 
      'Calculate nextWeight 203 
      Cells(2, 11).HorizontalAlignment = xlCenter 204 
      Cells(2, 11).VerticalAlignment = xlCenter 205 
      Cells(2, 11).Value = "nextWeight" 206 
      For Row = 3 To (n + 2) 207 
        PInd = Cells(Row, 9).Value 208 
        If Abs(PInd) > Gamma Then 209 
          Weight = 0 210 
        Else 211 
          u = PInd / Gamma 212 
          u2 = u * u 213 
          Weight = (1 - u2) ^ 2 214 
        End If 215 
        Cells(Row, 11).Value = Weight 216 
      Next Row 217 
       218 
      'Test for convergence of weights 219 
       220 
      'Calculate the absolute value of the weight difference |prevWeight - nextWeight| 221 
      Cells(2, 12).HorizontalAlignment = xlCenter 222 
      Cells(2, 12).VerticalAlignment = xlCenter 223 
      Cells(2, 12).Value = "|DiffWeight|" 224 
      Cells(2, 13).HorizontalAlignment = xlCenter 225 
      Cells(2, 13).VerticalAlignment = xlCenter 226 
      Cells(2, 13).Value = "Test Flag" 227 
      For Row = 3 To (n + 2) 228 
        prevWeight = Cells(Row, 8).Value 229 
        nextWeight = Cells(Row, 11).Value 230 
        absDiffWeight = Abs(prevWeight - nextWeight) 231 
        Cells(Row, 12).Value = absDiffWeight 232 
        If absDiffWeight < 0.001 Then 233 
          Cells(Row, 13).Value = 1 234 
        Else 235 
          Cells(Row, 13).Value = 0 236 
        End If 237 
      Next Row 238 
      Test = WorksheetFunction.Sum(Range(Cells(3, 13), Cells((n + 2), 13))) 239 
      Cells((n + 4), 13).Value = Test 240 
     241 
    Loop 242 
     243 
    Cells((n + 5), 13).Value = Iter 244 
 245 
'Select the Race Times sheet and print the SCT at the bottom of the Corrected Times 246 
    Sheets("Race Times").Select 247 
    Cells((n + 6), 4).HorizontalAlignment = xlRight 248 
    Cells((n + 6), 4).VerticalAlignment = xlCenter 249 
    Cells((n + 6), 4).Value = "SCT = " 250 
    Cells((n + 6), 5).NumberFormat = "hh:mm:ss.000" 251 
    Cells((n + 6), 5).Value = SCT 252 
 253 
End Sub 254 
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Comparison of Standard Corrected Times 

Using the Example Yacht Race (Table 1) we could have the following Standard Corrected Times SCTs  

Method Standard Corrected Time 

Standard Boat 

Real Imaginary 

Trimmed Fleet Average 5672 sec = 1:34:32 (h:mm:ss)  (3)-(4) 

45% Boat 5684 sec = 1:34:44 Delta (4)  

Median Boat 5698 sec = 1:34:58  (5)-(6) 

Optimum Boat 5706 sec = 1:35:06  (5)-(6) 

Table 4.  Standard Corrected Times for the Example Yacht Race.   

[For the Trimmed Fleet Average, the standard boat is imaginary with a corrected 

time between the 3rd and 4th place finishers.  The standard boat for the 45% Boat 

is Delta, which was 4th on corrected time.] 

Discussion 

The computation of the Standard Corrected Time SCT of a yacht race using the proposed Optimum Boat 

method is not simple but achievable with programming languages, e.g. Octave functions and VBA Excel 

macros.  The technique (and its solution) assumes an objective function ϕ  is a function of the kth yacht’s 

performance indicator kPI , its elapsed time kET , its allocated handicap kAHC , and a weight kw  that is a 

function of the yacht’s PI.  But a yacht’s PI is a function of the unknown SCT which means ϕ  is a function 

of unknown weights kw  and a single unknown parameter SCT.  The optimum value of ϕ  is its minimum 

value and this is when 
2

k k k
AVE

k k

w AHC w
SCT ET

q q
= ∑ ∑  and the solution for the SCT is iterative since 

kw  is also a function of the SCT.  An algorithm for the iterative solution is provided and a by-product of the 

solution is a set of weights { }1 2 3 nw w w w⋯  that are numbers in the range 0,1   .   

Small or zero weights are associated with larger-than-normal PIs, which indicate anomalous AHCs or perhaps 

incorrect ETs. Thus, the weights can be used to assess the quality of the allocated handicaps, identify 

incorrect ones, and indicate possible spurious ETs. 

For example, Table 5 shows a portion of the output from the Excel macro MestimateSCT() for the Example 

Yacht Race in Table 1.   

Sail 

No. Yacht 

Elapsed 

Time 

Allocated 

Handicap 

Corrected 

Time Place     q prevWeight 

10 Juliet 01:23:17 1.074 01:29:26.778 1 0.868062 0.6046 

7 Golf 01:32:29 1.003 01:32:45.647 2 0.963954 0.9394 

1 Alfa 01:26:37 1.079 01:33:27.563 3 0.902806 0.9658 

4 Delta 01:33:59 1.008 01:34:44.112 4 0.979588 0.9986 

5 Echo 01:34:21 1.005 01:34:49.305 5 0.983410 0.9992 

6 Foxtrot 01:34:44 1.004 01:35:06.736 6 0.987406 1.0000 

9 India 01:37:14 0.982 01:35:28.988 7 1.013463 0.9985 

2 Bravo 01:42:36 0.957 01:38:11.292 8 1.069400 0.9140 

8 Hotel 01:45:44 0.948 01:40:14.112 9 1.102059 0.7845 

3 Charlie 01:48:24 0.929 01:40:42.216 10 1.129853 0.7579         

aveET =  01:35:56.500 
   

SCT =  01:35:05.897 

Table 5.  Optimum Boat data for Example Yacht Race 
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All times in Table 5 are in h:mm:ss format.  The average elapsed time 1:35:56.500AVEET =  and column q 

contains ratios k k AVEq ET ET= .  The column headed prevWeights are the weights for the beginning of 

the 4th iteration (see Table 3) and the Standard Corrected Time 1:35:05.897SCT = . 

Now suppose the AHC of Juliet was incorrectly entered as 1.704 giving the output as shown in Table 6 

Sail 

No. Yacht 

Elapsed 

Time 

Allocated 

Handicap 

Corrected 

Time Place     q prevWeight 

10 Juliet 01:23:17 1.704 01:29:26.778 1 0.868062 0.0000 

7 Golf 01:32:29 1.003 01:32:45.647 2 0.963954 0.9294 

1 Alfa 01:26:37 1.079 01:33:27.563 3 0.902806 0.9523 

4 Delta 01:33:59 1.008 01:34:44.112 4 0.979588 0.9919 

5 Echo 01:34:21 1.005 01:34:49.305 5 0.983410 0.9932 

6 Foxtrot 01:34:44 1.004 01:35:06.736 6 0.987406 0.9968 

9 India 01:37:14 0.982 01:35:28.988 7 1.013463 0.9994 

2 Bravo 01:42:36 0.957 01:38:11.292 8 1.069400 0.9623 

8 Hotel 01:45:44 0.948 01:40:14.112 9 1.102059 0.8817 

3 Charlie 01:48:24 0.929 01:40:42.216 10 1.129853 0.8634         

aveET =  01:35:56.500 
   

SCT =  01:35:45.552 

Table 6.  Incorrect AHC for Juliet 

The weight of Juliet is zero which could be an indicator of either an incorrect ET or incorrect AHC. 

Conclusion 

A Performance Handicap System (PHS) uses a set of rules and mathematical calculations to produce a series 

of Corrected Times CTs for a yacht race, the Standard Corrected Time STC for that race, and Allocated 

Handicaps AHCs for the next race.  The STC can be established according to arbitrary rules, e.g., World 

Sailing’s Trimmed Fleet Average, or TopYacht’s 45% Boat, or by a mathematical rule, e.g., the Median 

Boat.   

A new method, Optimum Boat has been presented in this paper.  It relies on finding a minimum value of a 

function of the race fleet’s Performance Indicators PIs that yields the SCT and a set of weights that can be 

used in ‘data snooping’.  This method does not use arbitrary rules, instead, it relies only on the fleet’s PIs.  

The solution of the SCT and the weights, which is iterative, has been set out in the paper with examples of 

computer functions provided. 

Optimum Boat could be an attractive alternative to the usual (and often arbitrary) rules for establishing the 

SCT of a yacht race. 
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APPENDIX A 

 
 

WORLD SAILING9 – INTERNATIONAL EMPIRICAL HANDICAP SCHEME FOR YACHTS 

Welcome to the World Sailing Empirical Handicap Scheme for Yachts. As the name suggests the scheme 

is intended to permit yachts, generally displacement boats with keels, of varying designs to race against 

each other and after racing determine, by calculation, the race results by excluding the performance 

differences of the boats themselves. The scheme is an empirical handicap scheme, that is a scheme 

where after racing the relative performance of each boat - their handicap, is determined from the times 

it took each boat to complete the race. 

World Sailing provides this scheme to any race organiser who wishes to use it. It is intended to operate 

in isolation at local/race organiser level requiring no input to or from World Sailing or elsewhere. World 

Sailing does however offer users a basic method of handicap allocation to a boat for use in its first race. 

Before using the scheme an organiser needs to address four factors:- 

• The allocation of a boats handicap for its first race 

• How to calculate race results 

• How to adjust a boats handicap after racing 

• Whether or not to attempt to exclude the varying skills of crews from the calculations 

The allocation of a boats handicap for its first race 

A boats handicap is expressed as a number based about 1. Faster boats handicaps will be higher than 1 

with slow boats handicaps less than 1. Generally, the range of handicaps will be no more than 1.2 and 

no less than 0.8. 

It would never be wrong for a race organiser to allocate a first race handicap based on their own 

subjective opinion of a boat. If the organiser considers the boat to be of average performance, then a 

handicap of 1 would suit. If, however the organiser considers the boat faster than the fleet average then 

a handicap above 1 in the range of say 1 to1.2 would be appropriate. If the performance is thought to 

be below average, then a handicap of less than 1 in the range of 0.8 to 1 should be used. 

Alternatively, if the race organiser wishes the first race handicap could be allocated using the basic 

calculator at the following link - . 

Whatever the case the handicap number used to calculate the race results for a boat in its first and 

subsequent races should be adjusted before use in the boats next race. 

How to calculate race results 

The results of a race are determined by comparing the corrected times for each boat with the least time 

being the race winner, the next least second place and so on for each boat completing in the race. 

The corrected time (CT) for each boat is calculated by multiplying its elapsed time (ET), that is the time 

it took to complete the race, by its handicap (H) i.e. CT = ET x H 

 
9 World Sailing is the governing body for the sport of sailing formed in 1907 and then known as the 

International Yacht Racing Union (IYRU).  The name was changed to the International Sailing Federation 

(ISAF) in 1996 before adopting the name World Sailing in 2015. 

 



21 

 

An example of the calculations and how best to set this out is shown below. 

 

Example 1 ‒ Race Results 

 
 

Sail No Boat Finish Time 
Elapsed Time 

(ET) 
Handicap (H) 

Corrected 

Time (CT) 

Finishing 

Place 

1 A 14:56:37 01:26:37 1.079 01:33:28 3 

2 B 15:12:36 01:42:36 0.957 01:38:11 8 

3 C 15:18:24 01:48:24 0.929 01:40:42 9 

4 D 15:03:59 01:33:59 1.008 01:34:44 4 

5 E 15:04:21 01:34:21 1.005 01:34:49 5 

6 F 15:04:44 01:34:44 1.004 01:35:07 6 

7 G 15:02:29 01:32:29 1.003 01:32:46 2 

8 H 15:15:44 01:45:44 0.948 01:40:14 10 

9 I 15:07:14 01:37:14 0.982 01:35:29 7 

10 J 14:53:17 01:23:17 1.074 01:29:27 1 

 
Start Time = 13:30:00 

 
 

How to adjust a boats handicap after racing 

The life blood of empirical handicap racing is the adjustment of handicaps after racing. Without this 

race results and the scheme will soon become meaningless. 

The World Sailing empirical handicap scheme attempts to adjust the handicap of each boat based on 

the standard corrected time (SCT) of the fleet which is the average CT excluding the lowest 20% and 

highest 40% of the CTs (rounded down to whole numbers). 

Using the race result example above those CTs exclude are flagged in blue and yellow as shown below. 

The remaining CTs are averaged to give a SCT for the race (1:34:32 in the example). 

Dividing the SCT by a boats ET gives the calculated handicap which the boat would have had in the 

race for its CT to have equaled the SCT i.e. it gives the handicap to which the boat sailed in the race 

(h). 

The difference between H and h gives a performed indicator (PI) i.e. PI = h - H (which may be plus or 

minus). A proportion of the PI should be applied to the boats race handicap (H) with the result used 

as the boats new handicap in its next race (H’). 

The portion of the PI applied to adjust the handicap depends on the number of races the boat has 

completed in the fleet. The table below gives the portions. The new handicap H’ = H + (PI x PM). 
 

Races completed Portion Multiplier 

1 All 1 

2 Half 0.5 

3 One third 0.33 

4 One quarter 0.25 

5 One fifth 0.2 

Greater than 5 One fifth 0.2 
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Example 2 ‒ Race Results and Number Adjustment 

     
     

         
     

 

Sail 

No 
Boat 

Finish 

Time 

Elapsed 

Time 
Handicap  

Corrected 

Time  

Finishing 

Place 
 

CTs 

used 

for SCT 

Performed 

Handicap 

Performed 

Indicator  

PI 

Multiplier  

New 

Handicap  
 

    f ET H CT   
 

  h PI PM H'  
input input input f - ST input ET x H input 

 
input SCT / ET h - H input H + (PI x 

PM) 

 1 A 14:56:37 1:26:37 1.079 1:33:28 3  1:33:28 1.091 0.012 0.2 1.081 

 2 B 15:12:36 1:42:36 0.957 1:38:11 8    0.921 -0.036 0.2 0.950 

 3 C 15:18:24 1:48:24 0.929 1:40:42 9    0.872 -0.057 1 0.872 

 4 D 15:03:59 1:33:59 1.008 1:34:44 4  1:34:44 1.006 -0.002 0.2 1.008 

 5 E 15:04:21 1:34:21 1.005 1:34:49 5  1:34:49 1.002 -0.003 0.25 1.004 

 6 F 15:04:44 1:34:44 1.004 1:35:07 6  1:35:07 0.998 -0.006 0.25 1.002 

 7 G 15:02:29 1:32:29 1.003 1:32:46 2    1.022 0.019 0.33 1.009 

 8 H 15:15:44 1:45:44 0.948 1:40:14 10    0.894 -0.054 0.5 0.921 

 9 I 15:07:14 1:37:14 0.982 1:35:29 7    0.972 -0.010 0.5 0.977 

 10 J 14:53:17 1:23:17 1.074 1:29:27 1    1.135 0.061 0.2 1.086 

         
     

 Start Time (ST) = 1:30:00 PM   SCT = 1:34:32 
   

 

Whether or not to attempt to exclude the varying skills of crews from the calculations 

Unlike a Rating System an Empirical Handicap Scheme of the type explained here allocates handicaps to 

the combined boat performance and the crew skill.  This can sometimes work to the detriment of good 

crews and benefit of not so good crews as their ability is reflected in the adjusted handicaps. 

Whether or not to attempt to exclude crew skill from the calculations is a decision for the race 

organiser bearing in mind that to attempt this mathematically will involve on-going subjective 

judgements on the part of the organiser.  For more information on the exclusion of crew skill from the 

calculations please contact World Sailing at – technical@sailing.org 

 

This document at URL https://www.sailing.org/tools/documents/TurnkeytextVer2-[7780].pdf (accessed 04-

Dec-2024).   

Note that the Excel spreadsheet calculations in Example 2 can be found at URL 

https://www.sailing.org/tools/documents/EHWebRaceResultandNumberAdjustmentVers2-[20432].xlsx 

(This Excel workbook contains 2 spreadsheets, Points and Race 6.  The workbook was created in 2013 and 

last modified on 15-Mar-2016.  The author is Ken Kershaw) 
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APPENDIX B 

M-Estimation 

An estimator is a rule (a set of equations perhaps) for calculating an estimate of a quantity from observed 

data.  An estimator is efficient if its estimates are calculated in some ‘best possible’ manner, and it is 

unbiased if the difference between the expected value of the estimate and its true value is zero.  For our 

purposes, we define a quantity y , its estimate ŷ  (where the caret symbol ‘^’ denotes an estimate) and a 

residual v as follows. 

For the 1,2, 3, ,k n= …  yachts in the race, consider their allocated handicaps to be quantities 
ky  and their 

back-calculated handicaps be estimates 
k̂y  and write a simple equation for each yacht as 

 ˆ
k k ky v y+ =  (24) 

where the residual 
kv  is a small random quantity and (24) can be rearranged as 

 ˆ
k k kv y y= −  (25) 

and we may say that the residuals are functions of measurements and parameters.   

For example, in our Performance Handicap System yacht race, equation (24) represents 

k k kAHC v BCH+ =  and equation (25) represents 
k k kv BCH AHC= − , and with (3) and (4) we may write 

 
k k k kv SCT ET AHC PI= − =  (26) 

and the residuals are functions of the single parameter SCT, and the measurements  and k kET AHC . 

M-Estimators, originally proposed by Huber (1964) are a group of estimators that are outcomes of optimizing 

objective functions ϕ  having the general form 

 ( )
1

n

k
k

vϕ ρ
=

= ∑  (27) 

where ( )kvρ  is an arbitrary function of the residuals kv  having certain desirable characteristics, and a 

reasonable ( )kvρ  should have the following properties. 

• Always non-negative, ( ) 0kvρ ≥  

• Equal to zero when its argument is zero, ( )0 0ρ =  

• Symmetric, ( ) ( )k kv vρ ρ= −  

• Monotone in 
kv  ( ) ( )1 1for 0 k k k kv v v vρ ρ+ +< < ⇒ ≤  

• Differentiable  

In M-estimation, a weight w is obtained from a function of the residuals v and is a numeric value representing 

the degree of importance attached to a quantity, greater values reflecting more importance, and 0 1w≤ ≤ .  

The weight function is defined as 

 ( ) ( )w v v vψ=  (28) 

( )vψ  is the influence function that is the derivative of ( )vρ  or 

 ( ) ( )d
v v

dv
ψ ρ=  (29) 
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The inter-relationship between the three functions ( )-, -, -functionswρ ψ  would allow the -functionρ  to be 

determined from the -functionw  by first determining the -functionψ  from (28) as ( ) ( )v v w vψ =  and then 

the -functionρ  from (29) as ( ) ( )v v dvρ ψ= ∫ .  Alternatively, the -functionψ  could be defined and then 

( ) ( )v v w vψ =  and ( ) ( )w v v vψ= . 

We have chosen to use a weighting function, commonly known as Tukey’s bisquare weight function or 

biweight introduced by Beaton and Tukey (1974) and defined as 

 ( ) ( )221 for 1

0 for 1

u u
w u

u

 − ≤=  >
 (30) 

where u is a scaled residual defined as 

 ( ) ( )ˆ
k k k ku v y y cSγ= = −  (31) 

and cSγ =  is a weight constant, and the symbol γ  is the Greek letter gamma.  S is a measure of the scale 

that is calculated from the data and c is a tuning constant (more about S and c later).  Using (31) we may 

write the weighting function (30) as 

 ( ) ( )
2

2
1 for

0 for

v v
w v

v

γ γ

γ

   − ≤ =   >

 (32) 

Now using (28) gives ( ) ( )v v w vψ =  and with (32) we may write 

 ( ) ( )
2

2
1 for

0 for

v v v
v

v

γ γ
ψ

γ

    − ≤  =   >

 (33) 

Integrating both sides of (29) gives ( ) ( )v v dvρ ψ= ∫  and with (33) ( ) ( )
2

2
1v v v dvρ γ

 = −   ∫ .   

To evaluate this integral let ( )21s v γ= −  then ( ) 22ds v dvγ= −  and 2 2vdv dsγ= −  so that 

( ) ( )( ) ( )
32 22 2 2 32 2 3 1

6
v s ds s C v C

γ
ρ γ γ γ

 = − = − + = − − +  ∫  where C is a constant of integration.  

From our previous discussion, a desirable property of ( )vρ  is that ( )0 0ρ =  and enforcing this condition 

means that the constant 2 6C γ= and 

 ( ) ( )
3

22 1 1 for

6 1 for

v v
v

v

γ γ γ
ρ

γ

    − − ≤  =   >

 (34) 

[Note that we can confirm (29) if we differentiate (34) with respect to v. 

Make the substitution ( )21s v γ= − then 22ds dv v γ= −  and ( ) ( )
2

31
6

v s
γ

ρ = − . 

Now ( )( )2 2 2 22 2d dv d ds ds dv s v vsρ ρ γ γ= ⋅ = − ⋅ − =  and ( ) ( )
2

2
1

d
v v v

dv
ρ γ

 = −   
 as 

expected.] 
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The M-estimator (in this case a single equation) will arise from optimizing the objective function ϕ , i.e., 

 ( )
1

optimum
n

k
k

vϕ ρ
=

= ⇒∑  

And using (34) the objective function ϕ  is 

 ( ) ( )
3

22

1 1

1 1 for 

6 1 for 

n n

k
k

k k

v v
v

v

γ γ γ
ϕ ρ

γ= =

     − − ≤  = =     >   

∑ ∑  (35) 

On the assumption that all kv γ≤  and that 
k k kv SCT ET AHC= −  we write 

 

( ) ( )

( ) ( ) ( ){ }
( ) ( ) ( )

32 2

1 1

2 2 4 6

1
2 2 4 6

2 4 6
1

1 1
6

3 3
6

3 3 1

6

n n

k k
k k

n

k k k
k
n

k k k k k k
k

v v

v v v

SCT ET AHC SCT ET AHC SCT ET AHC

γ
ϕ ρ γ

γ
γ γ γ

γ

γ γ γ

= =

=

=

    = = − −      

= − +

   = − − − + −    

∑ ∑

∑

∑

 

Now ϕ  is a function of the estimated parameter SCT, i.e., ( )SCTϕ ϕ=  and the function will be an 

optimum (either a minimum or a maximum value) when the derivative with respect to the SCT is equal to 

zero, i.e., optimumϕ ⇒  when 0
d

d SCT

ϕ
=  and the derivative is obtained as follows 

 

( ) ( )

( )

( ) ( ) ( )

3

2 2 4

5
1

6

3 5

2 4

6 1 12 1

6 16

1 2 1

n k k k k

k k

k
k k

k

k k k k k k

k

SCT ET AHC SCT ET AHC
d ET ET

d SCT
SCT ET AHC

ET

SCT ET AHC SCT ET AHC SCT ET AHC
ET

ϕ γ γ γ

γ

γ γ

=

         − − −            =     + −       
   = − − − + −  

∑

( ) ( ) ( )

( ) ( )

1

2 4

2 4
1

2
2

2
1

1 2 1
1

1 1
1

n

k
n

k k k k k k
k k

n

k k k k
k k

SCT ET AHC SCT ET AHC SCT ET AHC
ET

SCT ET AHC SCT ET AHC
ET

γ γ

γ

=

=

=


   = − − − + −    
  = − − −   

∑

∑

∑  (36) 

But, from (26) and (32) we have the weighting function 

 ( ) ( )
2 2

2 2

2

1
1 1 for

0 for

k k k k
k

k

SCT ET AHC PI PI
w

PI

γ γ
γ

γ

    − − = − ≤   =     >

 (37) 

And substituting (37) into (36) gives 

 ( )
1

n
k

k k
k k

wd
SCT ET AHC

d SCT ET

ϕ

=

= −∑  (38) 

The weights 
kw  are positive numeric values less than or equal to 1, or they are zero, and even though they 

are functions of the SCT they can be considered as constants for any particular value of the SCT and the 
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second derivative becomes 
2

2 2
1

0
n

k

k k

wd

d SCT ET

ϕ

=

= >∑  and the optimum value of ϕ  will be a minimum when 

the derivative (38) is equated to zero.  This leads to the equation for SCT as 

 
2

k k k

k k

w AHC w
SCT

ET ET
= ∑ ∑  (39) 

For numerical stability, let k
k

AVE

ET
q

ET
=  where 

1
AVE kET ET

n
= ∑  then 

 
2

k k k
AVE

k k

w AHC w
SCT ET

q q
= ∑ ∑  (40) 

In M-estimation, the weights kw  are functions of the ‘unknown’ parameters which means that the solution is 

iterative and usually begins by assuming some initial values for either the weights or the parameters and 

then calculating a new set of weights and parameters and the iterative process ceases when differences 

between successive solutions reach acceptably small values. 

In our case, there is a single unknown parameter, the SCT, and the iterative process begins by assuming a 

set of initial weights all equal to unity and ceases when the changes to the weights reach acceptably small 

values. 

Tukey’s bisquare weight function with Median Absolute Deviation (MAD) 

In the calculation of the weights 
kw  using Tukey’s bisquare weight function (37) the factor cSγ =  is 

required where c is tuning constant (see below) and S is a measure of scale (or variability of the data) 

computed from the data.  For a sample of size n, measures of scale S of the residuals kv  could be the sample 

standard deviation 
vs  computed from the sample variance ( )22

1

1

1

n

v k
k

s v v
n =

= −
− ∑  where 

vs  is the positive 

square root of 2
vs  and 

1

1
n

k
k

v v
n =

= ∑  is the sample mean which is a measure of location (or centre) of the 

sample.  But the sample mean and variance (and hence the sample standard deviation) are known to suffer 

from the effects of outliers, since large residuals affect the mean v  and also the squared differences 

( )2kv v−  in the calculation of the variance.   

A more robust measure of the location of a sample is the median M and a more robust measure of the scale is 

the Median Absolute Deviation (MAD) which is defined as the median of the absolute deviations from the 

sample’s median M, i.e., 

 { } { }MAD median     where mediank kv M M v= − =  (41) 

where the braces { }  indicate a finite sample of n values. 

The median M of a sample { }jx  of n values ordered from smallest to largest so that 1 2 nx x x< < <…  is  

 { } ( )
1

1
12

if 2 1 is odd

if 2  is is even

p

j
p p

x n p
M x

x x n p

+

+

 = +=  + =
 (42) 

In either case, there will be the same number values that are larger than or equal to the median, and smaller 

than or equal to the median M. 
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For example, suppose jv  is a set of 1,2, ,j n= …  values and for 7n = , { }2 7 4 16 1 0 8jv = − .  

The set is ordered from smallest to largest as { }2 0 1 4 7 8 16
↑

−  and since n is odd, the median M is 

the middle value indicated with ↑ , ( )1 2 3p n= − =  and 1 4pM v += = .  There are 3 values less than M 

(the values to the left of the 4th value) and 3 values greater than M (the values to the right of the 4th value). 

Now suppose the set { }2 7 2 16 1 0 8 4 4 5jv = − −  has 10n =  values that are ordered from 

smallest to largest as { }5 2 0 1 2 4 4 7 8 16
↑ ↑

− − , and since n is even, the median M is the average 

of the two middle values and 2 5p n= =  and ( )1
12

3p pM v v += + = .  There are 5 values less than the 

median (the first 5 values) and 5 values greater than the median (the last 5 values). 

It should be noted here that if X is a random variable that can take values n values 1 2, , , nx x x…  having a 

median M then the probability that any X is less than or equal to the median is exactly 1
2
 or 

( ) 1
2

Pr X M≤ =  and if X is a continuous random variable with a probability density function ( )Xf x  and 

cumulative distribution function ( )XF x , so that ( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
=  then the 

median M is defined by the solution of the integral equation ( ) ( ) ( ) 1
Pr

2

M

X XX M F M f x dx

−∞

≤ = = =∫ . 

Appendix C shows how this result can be used to determine the value of a scale factor b that enables the 

MAD to be used as a consistent estimator of the standard deviation σ  of normally distributed data where 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (43) 

The measure of scale S above and in (31) is often taken to be ( )1.4826 MADS = . 

The Tuning Constant in M-estimation 

M-estimation is the outcome of optimizing the objective function ( )
1

n

k
k

vϕ ρ
=

= ∑  where ( )kvρ  is a function of 

the residuals 
kv  and is related to the influence function ( )vψ  and weight function ( )w v  by 

( ) ( )d
v v

dv
ψ ρ=  and ( )

( )v
w v

v

ψ
= .  The residuals 

kv  are defined from the general relationship 

measurement + residual = best estimate (or ˆ
k k ky v y+ = ) giving ˆ

k k kv y y= −  and a scaled residual 

ˆ
k k k

k

v y y
u

cSγ

−
= =  where cSγ =  and S is a measure of scale computed from the residuals and c is a tuning 

constant.   

Now suppose that the residuals are each divided by S, computed from the sample, and these standardized 

residuals are k
k

v
v

S
=ɶ  and the scaled residuals k

k

v
u

c
=
ɶ

.  For example, using Tukey’s bisquare weight 

function 

 ( ) ( )
2

2
1 for

0 for

v c v c
w v

v c

   − ≤ =   >

ɶ ɶ
ɶ

ɶ

 (44) 
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the ψ  and ρ  functions are 

 ( ) ( )
2

2
1 for

0 for

v v c v c
v

v c

ψ

    − ≤  =   >

ɶ ɶ ɶ
ɶ

ɶ

 (45) 

 ( ) ( )
3

22 1 1 for

6 1 for

c v c v c
v

v c

ρ

    − − ≤  =   >

ɶ ɶ
ɶ

ɶ

 (46) 

The M-estimator ( )vψ ɶ , resulting from optimizing ( )
1

n

k
k

vϕ ρ
=

= ∑ , should be an unbiased estimator and its 

efficiency can be defined as a ratio of the minimum possible variance of an unbiased estimator to the actual 

variance of the estimator and it can be proved that this ratio is less than or equal to unity, i.e., for an 

unbiased estimator θ̂ , 

 ( )
ˆminimum possible variance of ˆ 1

ˆactual variance of 
eff

θ
θ

θ
= ≤  

The actual variance of θ̂  can only be determined if the probability distribution of the random variable, from 

which the estimator is derived, is known.  Hence the efficiency of an estimator is described as ‘relative to’ or 

‘with respect to’ a particular distribution.  The standard normal distribution is often assumed to be the 

underlying probability distribution. 

The efficiency of an estimator is often expressed as a percentage, e.g. if ( )ˆ 0.95eff θ =  then θ̂  has an 

efficiency of 95% with respect to the standard normal distribution. 

An equation for 95% efficiency of an M-estimator, assuming the residuals are from a standard normal 

distribution, is given by Huber (1981) as 

 

( ) ( )

( ) ( )

2

2

0.95

c

X

c

c

X

c

x f x dx

eff

x f x dx

ψ

ψ

−

−

 
 ′ 
 
 = ≈

  

∫

∫

 (47) 

where ( )0,1x N∼  are the random variables, ( )Xf x  is the pdf of the standard normal distribution, ( )xψ  is 

the influence function for any M-estimator and ( ) ( )d
x x

dx
ψ ψ′ =  

Equation (47) involving the tuning constant c as integration limits is solved numerically by Banas & Ligas 

(2014) to obtain 4.685c =  for the influence function for Tukey’s biweight (see (44) to (46) above with x 

replacing vɶ ).  For example, with 

 ( ) ( )
2

2
1 for

0 for

x x c x c
x

x c

ψ

    − ≤  =   >

   then   ( ) ( ) ( )2 2
1 1 5 for

0 for

x c x c x c
x

x c
ψ

      − − ≤       ′ =  >
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And with ( )
21

2
1

2

x

Xf x e
π

−=  equation (47) can be (rather crudely) evaluated using the following function 

eff written in GNU Octave10  

function eff 
for c = 4.68:0.005:4.70   
  sumx = 0; 
  sumy = 0; 
  dx = 0.0005; 
  root = sqrt(2*pi); 
 
  for x = -c:dx:c 
    fx = 1/root*exp(-x*x/2); 
    u  = x/c; 
    u2 = u*u; 
    px = x*(1-u2)^2; 
    pdashx = (1-u2)*(1-5*u2); 
    sumx = sumx + (pdashx*fx*dx); 
    sumy = sumy + (px^2*fx*dx); 
  end   
  eff = sumx^2/sumy; 
  fprintf(' c   = %5.3f',c); 
  fprintf('\n eff = %8.6f\n',eff); 
end 
endfunction 
 

The results, shown in the Octave Command Window, are 

>> eff 
 c   = 4.680 
 eff = 0.949793 
 c   = 4.685 
 eff = 0.949997 
 c   = 4.690 
 eff = 0.950201 
 c   = 4.695 
 eff = 0.950403 
 c   = 4.700 
 eff = 0.950605 
>> 

 

The computed efficiency of 0.949997 for 4.685c =  confirms the result of Banas & Ligas (2014) and others, 

e.g., Hogg 1979 and Yohai 1987. 

 

 
10 GNU Octave is a high-level language, primarily intended for numerical computations.  It provides a convenient 

command line interface for solving linear and nonlinear problems numerically, and for performing other numerical 

experiments using a language that is mostly compatible with Matlab.  GNU Octave is freely redistributable software from 

the Free Software Foundation. 
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Figure 5.  Tukey’s bisquare -ρ , -ψ  and -w functions 
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Appendix C 

Population Median and Median Absolute Deviation (MAD) 

The derivation of the probability statements ( ) 1
Pr MAD

2
X µ− ≤ =  and 

MAD 3
Pr

4
Z

σ

  ≤  =   
 are the 

work of Dr Max Hunter, who turned his keen eye and talent for rigour to a topic not often treated in the 

statistical literature.  It’s a joy. 

Let X be a random variable with a density function ( )Xf x  and distribution function ( )XF x , so that 

( ) ( )
x

X XF x f y dy

−∞

= ∫ , or ( ) ( )X X

d
F x f x

dx
= . 

The population median m is defined by the solution of the integral equation 

 ( ) ( ) ( ) 1
Pr

2

m

X XX m F m f x dx

−∞

≤ = = =∫  (48) 

The alternative equation 

 ( ) 1

2X

m

f x dx

∞

=∫  (49) 

can also be used to define m. 

Let the random variable Y be defined by 

 
,  if 

0
,  if 

X m X m
Y X m

m X X m

 − ≥≤ = − =  − <
 

Suppose its density function is ( )Yg y  with distribution function ( )YG y .  Then for 0y ≥ , 

 

( ) ( )
( )
( )
( )
( ) ( )
( ) ( )

Pr

Pr

Pr

Pr

Pr Pr

Y

X X

G y Y y

X m y

y X m y

m y X m y

X m y X m y

F m y F m y

= ≤

= − ≤

= − ≤ − ≤
= − ≤ ≤ +

= ≤ + − ≤ −
= + − −

 

And for ( )0, 0Yy G y< = . 

Hence for 0y ≥  

 ( ) ( ) ( ) ( ){ } ( ) ( )Y Y X X X X

d d
g y G y F m y F m y f m y f m y

dy dy
= = + − − = + + −  

and ( ) 0Yg y =  for 0y < . 

The population median M of the random variable Y satisfies the equation 

 ( ) 1

2

M

Yg y dy

−∞

=∫  

And 
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( ) ( ) ( ) ( )

( ) ( ){ }

( ) ( )

( )

0

0 0

0

     (with substitutions , )

M M M

Y Y Y Y

M

X X

m M m M

X X

m m
m M

X

m M

g y dy g y dy g y dy g y dy

f m y f m y dy

f s ds f t dt s m y t m y

f s ds

−∞ −∞

+ −

+

−

= + =

= + + −

= − = + = −

=

∫ ∫ ∫ ∫

∫

∫ ∫

∫

 

and therefore 

 ( ) 1

2

m M

X

m M

f s ds

+

−

=∫  (50) 

Suppose now that ( )Xf x  is symmetric about the origin then 0m =  from (48).  So, by (50) 

 ( ) ( )
0

1
2

2

M M

X X

M

f x dx f x dx

−

= =∫ ∫  

and therefore 

 ( )
0

1

4

M

Xf x dx =∫  

Thus, the interval ,M M −   encloses an area of 0.5 under the density function for X, or since 

 ( ) 3

4

M

Xf x dx

−∞

=∫ , 

M is the 75 percentile of X. 

But M is just the definition of MAD, so for any random variable X with a population mean { }E X µ=  and 

a symmetric density function about { }E X µ=  

 ( ) 1
Pr MAD

2
X µ− ≤ =  (51) 

Now 

 

( ) MAD
Pr MAD Pr

MAD
Pr    

MAD MAD
Pr    by definition of modulus

MAD MAD
Pr Pr    by symmetry

MAD MAD
=Pr 1 Pr

X
X

Z

Z

Z Z

Z Z

µ
µ

σ σ

σ

σ σ

σ σ

σ σ

 −  − ≤ = ≤   
 = ≤    
 = − ≤ ≤    
     = ≤  − ≤ −        

   ≤  − − ≤    
   by definition

MAD
2Pr 1Z

σ

     
 = ≤  −   
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and, using (51) 

 
MAD 3

Pr
4

Z
σ

  ≤  =   
 (52) 

If ( )Zf z  is the density function of the standard normal distribution and ( )ZF z  is the distribution function 

(see Appendix B) then 

 1MAD 3

4ZF
σ

−  =    
 (53) 

Where 1
ZF−  denotes the standard normal inverse cumulative distribution function.  Most mathematical 

software packages (Maple, Mathematica, Matlab, R, etc.) have functions to compute inverse cumulative 

distribution functions and for the standard normal distribution GNU Octave has a function norminv() that 

computes the value of ( )1
ZF x−  and for ( )1MAD 3 4ZFσ −=  can be computed from the following 

instructions in the Octave Command Window. 

 
>> format long g 
>> MAD_on_sigma = norminv(3/4) 
MAD_on_sigma = 0.6744897501960818 
>> 
 

And 

 1 8
M

0.67448975019608
AD 3

1
4ZF

σ

−  =  ≈   
 (54) 

Inspection of (43) leads to  

 1.482602218505602
MAD

b
σ

= ≈  (55) 

We can use this relationship to estimate the standard deviation from 

 ( )ˆ MAD 1.4826 MADbσ = × ≈  (56) 

 

 


